| อสมการ |
|
| ค่าสัมบูรณ์ |
|
| คุณสมบัติของค่าสัมบูรณ์ | 1. |
| 2. |
| 3. |
| 4. |
| 5. |
| 6. |
| 7. |
| การแก้อสมการที่อยู่ในรูปค่าสัมบูรณ์ | |
| 1.ถอดโดยใช้ความหมายของค่าสัมบูรณ์ |  |
|  |
| 2.ถอดโดยใช้ความรู้เกี่ยวกับสมการและอสมการถ้าa>0 | 1. |
| 2. |
| 3. |
| 4. |
| 5. |
| เลขยกกำลังและราก | |
| คุณสมบัติเลขยกกำลัง | 1. |
| 2. |
| 3. |
| 4. |
| 5. |
| 6. |
| คุณสมบัติเกี่ยวกับราก | 1. |
| 2. |
| 3.
| ตรรกศาสตร์ |
| ประพจน์ | ประโยค หรือข้อความ ที่มีค่าความจริงเป็นจริง หรือ เท็จ อย่างใดอย่างหนึ่งเพียงอย่างเดียว |
| การเชื่อมประพจน์และการหา ค่าความจริงของประพจน์ที่มีตัวเชื่อม | |
| การเชื่อมประพจน์ด้วยตัวเชื่อม " และ " | ใช้สัญลักษณ์  |
|
p
|
q
|
p q
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
F
|
|
| การเชื่อมประพจน์ด้วยตัวเชื่อม " หรือ " | ใช้สัญลักษณ์  |
|
p
|
q
|
p q
|
T
|
T
|
T
|
T
|
F
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
| การเชื่อมประพจน์ด้วยตัวเชื่อม " ถ้า...แล้ว " | ใช้สัญลักษณ์  |
p
|
q
|
p q
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
F
|
T
|
| การเชื่อมประพจน์ด้วยตัวเชื่อม " ...ก็ต่อเมื่อ..." | ใช้สัญลักษณ์  |
p
|
q
|
p q
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
T
|
| การเชื่อมประพจน์ด้วยตัวเชื่อม " ไม่ " | ใช้สัญลักษณ์  |
p
|
p
|
T
|
F
|
F
|
T
|
p
|
q
|
p q
|
( p q ) p
|
T
|
T
|
T
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
F
|
T
|
F
|
F
|
F
|
T
|
| การให้เหตุผลที่สมเหตุสมผล | |
เหตุ
|
1. p
|
|
2. p q
|
ผล
|
q
|
|
| ความสัมพันธ์ |
| ผลคูณคาร์ทิเชียน |  |
| คุณสมบัติที่สำคัญ | 1.  |
| 2.  |
| 3.  |
| ข้อความต่อไปนี้ไม่จริง | 1 . |
2.  |
|
|
| ความสัมพันธ์ | เรียก r ว่าเป็นความสัมพันธ์จาก A ไป B เมื่อ  |
| โดเมน และ เรนจ์ของความสัมพันธ์ | |
| โดเมน |  |
| เรนจ์ |  |
|
|
| ความสัมพันธ์ |
| ผลคูณคาร์ทิเชียน |  |
| คุณสมบัติที่สำคัญ | 1.  |
| 2.  |
| 3.  |
| ข้อความต่อไปนี้ไม่จริง | 1 . |
2.  |
|
|
| ความสัมพันธ์ | เรียก r ว่าเป็นความสัมพันธ์จาก A ไป B เมื่อ  |
| โดเมน และ เรนจ์ของความสัมพันธ์ | |
| โดเมน |  |
| เรนจ์ |  |
|
|
| ฟังก์ชัน |
| ฟังก์ชัน |  |
|
| ฟังก์ชันแบบ 1-1 |  |
|
| ชนิดของฟังก์ชัน | 1. ฟังก์ชันจาก A ไปทั่วถึง B แบบ 1-1 |
| 2. ฟังก์ชันจาก A ไปยัง B แบบ 1-1 |
| 3. ฟังก์ชันจาก A ไปทั่วถึง B แบบ many - to - one |
| 4. ฟังก์ชันจาก A ไปยัง B แบบ many - to - one |
| อินเวอร์สฟังก์ชัน |  |
| ข้อสังเกต |  |
 |
คอมโพสิตฟังก์ชัน
|  |
| หลักการหา gof (x) |  |
| ข้อสังเกต | 1. gof กับ fog ไม่จำเป็นต้องเท่ากัน |
| 2. เราจะหา gof ได้ก็ต่อเมื่อ ฉะนั้นในบางกรณีไม่สามารถหา gof ได้ |
| สิ่งควรรู้ | 1. |
2. |
3. ไม่จำเป็นต้องเท่ากับ 
| ภาคตัดกรวย |
| สมการวงกลมจุดยอด(0,0) |
|
|
|
| สมการวงกลมจุดยอด(h,k) |
|
|
|
| สมการวงกลม |
|
|
|
| วงรี |
|
|
|
| สมการวงรีจุดโฟกัสที่(c,0),(-c,0) |
|
|
|
| สมการวงรีจุดโฟกัสที่(0,c),(0,-c) |
|
|
|
| สมการวงรีจุดศูนย์กลางที่จุด(h,k) | | | |
| ขนานกับแกน x ของวงรี |
|
|
|
| ขนานกับแกน y ของวงรี |
|
|
|
| ไฮเพอร์โบลา |
| |
|
สมการไฮเพอร์โบลาโฟกัส (c,0),(-c,0) |
|
|
|
สมการไฮเพอร์โบลาโฟกัส (0,c),(0,-c) |
|
|
|
| สมการไฮเพอร์โบลาจุดศูนย์กลางที่จุด(h,k) |
| |
|
| ขนานกับแกน x ของไฮเพอร์โบลา |
|
|
|
| ขนานกับแกน y ของไฮเพอร์โบลา |
|
|
|
| พาราโบลา | | | |
| สมการพาราโบลาจุดโฟกัส(p,0) |
|  |
|
| สมการพาราโบลาจุดโฟกัส(-p,0) |
|  |
|
| สมการพาราโบลาจุดโฟกัส(0,p) |
|  |
|
| สมการพาราโบลาจุดโฟกัส(0,-p) |
|  |
|
|
|
|
|
|
ไม่มีความคิดเห็น:
แสดงความคิดเห็น